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SUMMARY

This report presents a study of rotor and stator scattering using the SOURCE3D Rotor

Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that

uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate

rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the

core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA,

which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan

engines.

The reason for studying scattering is that we must first understand the behavior of the

individual scattering coefficients provided by SOURCE3D, before eventually understanding the

more complicated predictions from TFaNS. As a first step toward understanding these

coefficients, we have derived a large number of scattering curves for vane and blade rows and

studied them for general trends. The curves are plots of output wave power divided by input

wave power (in dB units) versus vane/blade ratio. This is a format that is suited both for physical

as well as design study. A small sampling of these plots is provided here. All of the plots are

provided in a separate volume. To assist in understanding the plots, formulas have been derived

for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator

chords.

Work in this report was coordinated with concurrent work by D. B. Hanson who used

two-dimensional analysis to derive parallel curves. In addition to allowing comparison between

two- and three-dimensional based results, coordination with the two-dimensional case also

allowed verification of the three-dimeusional method. For the three-dimensional case, it was

found that, for the most part, there was strong transmission and weak reflection over most of the

vane/blade ratio range for the stator. Also, modes transmitted into themselves over large portions

of the vane/blade ratio range. For the rotor, there was little transmission loss and, in a wide range

of cases, modes transmitted into themselves or into themselves and nearby radial modes. The

above stator and rotor trends were different from those for two-dimensions. Additionally, it was

seen for rotor curves that scattered wave energy could sometimes be greater than input wave

energy.
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CHAIVrER 1

INTRODUCTION

The TFaNS (Theoretical Fan Noise Design/Prediction System, Ref. 1) provides a

methodology for turbofan harmonic noise prediction. Developed by Pratt and Whitney under

contract to NASA Lewis, it seeks to obtain higher accuracy than previous three-dimensional

codes by including all the acoustic elements of an engine - inlet, rotor, stator, exit (Fig.l.1) - in

its formulation. In TFaNS, as in other codes, rotor wakes impinge on the stator, generating

unsteady vane loads that produce noise. However, reflections from the inlet, rotor, and exit -

missing from earlier approaches- are also included to provide additional sound contributions that

should be present. The geometry is that of a three-dimensional annulus (Fig 1.2).

The fundamental behavior of TFaNS is governed by the rotor and stator scattering

(reflection and transmission) coefficients. Because they are so central to TFaNS and because the

output of TFaNS is so complex, we must first gain an understanding of them before expecting to

understand the more general output of TFaNS, which comes from numerous modes reflecting

back and forth and scattering into the same and other modes. Therefore, the object of the present

work is to study the behavior of the reflection and transmission coefficients for the rotor and

stator.

In TFaNS, scattering coefficients are defined in terms of duct eigenmodes and are

determined for each of the engine elements in isolation. Also, source vector coefficients

representing the interaction of the rotor wake with the stator are generated. Using this

information, the acoustic elements are coupled by means of a matrix equation

A = SA + B , (1.1)

that matches acoustic input and output at the interface planes shown in Fig. 1.1. In Eq. (1.1), A is

the state vector, which represents the modal amplitudes of the waves generated by the system.

This vector has elements A 1, A 2, A a at the three interface planes. The quantity B is the source

vector, made up of source vector coefficients; it has elements B _, B a, B° at the three interfaces.

The parameter S is the scattering matrix, consisting of all the scattering coefficients. Solving Eq.

(1.1) gives the state vector

A = (1 - S)-IB, (1.2)

which is used to calculate whatever output information is required. This process is described in

further detail in Refs. 2 and 3.

The scattering coefficients, as well as the source vector coefficients, are calculated in

TFaNS using the SOURCE3D Rotor Wake/Stator Interaction Code (Ref. 4) which is at the heart

of TFaNS. It was developed at Hamilton Standard under NASA's Large Engine Technology

Contract. It is SOURCE3D that has been used to generate the scattering curves central to this



l I I 1 I I i /
J ROTOR I STAr'OR I EXIT

I I I

1 2 3

xl x2 x3

A 1 A 2 A 3

B 1 B2 B3

INTERFACES PLANES

AXIAL COORDINATES

STATE VECTOR ELEMENTS

SOURCE VECTOR ELEMENTS

_.-X 1

FIGURE 1.1 TURBOFAN ACOUSTIC ELEMENTS

-2-



(r,$,Xl)

x 2

INLET
VELOCITY

7

S " s's 1

(
NTATOR

FIGURE 1.2 THREE-DIMENSIONALTURBOFAN GEOMETRY

3



report.

SOURCE3D extends the ideas used by its predecessor, the V072 Rotor Wake/Stator

Interaction Code (Ref. 5), to treat scattering in an annular duct by applying a combined three-

dimensional/two-dimensional approach. In SOURCE3D, three-dimensional acoustic input waves

impinge on stator vanes or rotor blades producing unsteady loads, which are calculated using

two-dimensional strip theory. These loads are coupled to three-dimensional duct modes by means

of the normal mode expansion of the three-dimensional Green's function for acoustic waves or by

means of a variant of S. N. Smith's theory (Ref.6) for vorticity waves, which were not in V072.

The output waves in both cases are three-dimensional. SOURCE3D provides rotor dements and

includes swirl in the region between the rotor and stator, both of which also were absent from

V072. It also adds actuator disks for flow turning and combines these with the rotor and stator

elements to provide combined rotor/actuator disk and stator/actuator disk elements. With all

these additions, SOURCE3D permits both frequency scattering and mode trapping, which are

necessary in obtaining more accurate noise predictions. Background axial flow in SOURCE3D

is uniform in each dement region, while swirl is of solid body type. The unsteady flow is subsonic

and isentropic.

Work here was coordinated with parallel work for the two-dimensional approach by D. B.

Hanson (Ref. 2). Both studies use the same test cases and a similar format for presenting results.

Studying the two has provided a baseline from which to see the difference a three-dimensional

approach makes, in addition to just splitting circumferential modes into radial mode components.

Many three-dimensional results were similar to those for two dimensions; however, there are

exceptions that will be seen later.

In material that follows, we start with a "background and preliminaries" section which

briefly discusses geometry and a definition of standard waves and scattering coefficients. We also

discuss the format for the curves that present our results as well as discussing cut-on range and

special points on the curves. In the next chapter, the main results of the report are described for

two test cases - one at a mid speed rotor rotational speed and the second at a high speed

rotational speed. The results are based on a very large collection of scattering curves. Only a

small sampling of these plots is shown here. All of the plots are provided in a separate volume

(Ref. 7). Much of the background for work in this report appears in more detail in other papers.

Therefore the reader may wish to consult the references cited in particular sections when

additional details are desired.
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CHAPTER 2

BACKGROUND AND PRELIMINARIES

2.1 Standard Waves and Scattering Coefficients

In SOURCE3D, the geometry is that of the annular duct shown in Fig. 1.2. As seen in the

figure, the coordinate system is cylinder polar with the polar axis x_ oriented along the duct

centerline. The coordinate xl increases in the direction of air flow and may have its origin at

different locations depending upon the situation. The rotor rotates in the direction of positive

polar angle _ with fan rotational speed f2. The duct has outer radius rD and inner radius rH .

Fig. 2.1 shows the intersection of the stator vanes and rotor blades with a cylindrical surface of

radius r. The stator has V equally spaced identical vanes with spacing 2_r / V. The same is true

for the rotor, only spacing is 2_r / B. The vane stagger angle is a s and its local semi-chord is b.

For the blades, the rotor stagger angle is "_R and the local semi-chord is bR. The rotor stagger

angle is defined in this manner to be consistent with the definition in Ref. 4.

SOURCE3D treats three types of waves - upstream-going pressure waves, downstream-

going pressure waves, and one type of downslream-going vorticity wave. In this report, we wiT1

only study scattering coefficients for the pressure waves, so vorticity waves will not be of treated.

The pressure waves are described in terms of standard modes. This means that pressure pP is

given by the expression

pP(xl,r,_,t)= p** _ _ _ A_s_Vmn(r)e '[m'_'ff_'_(xl-xe)-ss_]

s=--o, k=--o, n=l

(2.1)

Here, s is the blade passing frequency (BPF) harmonic index; k, the vane passing frequency

harmonic index; n, the duct radial mode index; m, the circumferential mode order, given by

m = sB - kV; and t is time. The function V ran(r) is the standard duction radial mode, given in

terms of Bessel functions. These functions have eigenvalues _:,,m. Radial mode indices here start

at n = 1 to stay consistent with the convention in V072. Standard practice in many other places is

to use an index gt = n - 1 so that counting starts at 0. Note that, for the two-dimensional case in

Ref. 2, n, rather than s, has been used for the BPF harmonic index. However, k is still the vane

passing frequency harmonic index. Also, m =nB - kV. There is no radial mode index because

there axe no radial modes in two dimensions.

The standard waves have their origins at the axial interface locations x t', where P = 1, 2, 3

(see Fig.l.1). Also, x v may represent the axial locations x s where the stator leading edge meets

the hub or x R where the rotor leading edge meets the hub. Generally, for derivations here,

coordinate systems have been defined, for convenience, so that either x s = 0 or x R = 0. In
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Eq. (2.1), the subscripts Windicate wave type: for W = 1, the wave is upstream-going; when

W = 2, it is downstream-going. The parameters A_sb_ are state vector coefficients and

represent pressure modal amplitudes. They are normalized by the far-field pressure p** and will

be used below to define our scattering coefficients. They make up the elements used to specify

the state vectors A discussed in Chapter 1. The quantities 7 _sb_are the axial wavenumbers,

which are given by
P

7 ews_ = _-_rD[m(sBMr - raMs) + k_cs_], (2.2)

where the upper sign (+) is for upstream-going waves (W = 1), and the lower sign (-) is for

downstream-going waves (W = 2). Further, M is the axial flow Mach number; Mr, the rotor

blade tip rotational Mach number; M,, the swirl rotational Math number at the rotor tip (not to

be confused with Ms used in Ref. 4 for the axial flow Mach number in the stator region);

=1-4i-5- ;and
kSsbz = _] (sBMT - mMs )2 - _ :_c,2mn. (2.3)

Values of the Mach numbers and _ in Eq. (2.3) are those for the regions associated with P.

As discussed in Refs. 3 and 4, upstream- and downstream-going pressure waves wa21 each

scatter into both upS- and downstream-going pressure waves.* When viewed from a

stationary coordinate system, input waves with indices si, k_, ni will be scattered by the stator into

waves with index si, but not nex,e_sarily into waves with indices ki and n_. These same waves wiI1

be scattered by the rotor into waves with index k_, but not necessarily with indices s_ and hi. We

represent this process schematically by

Stator:

Rotor:

For such interactions, we define the scattering coefficients, o.WW:b_;s_lqn_, as the ratios,

Aews_, / A_s_,_, of output to input wave state vectors, where P_ and W_ are values of P and W for

input waves. This ratio is equivalent to the value of the output wave mode amplitude produced

by a unit modal input wave, i.e. one having = 1. Schematically, we represent theA_sl/qni

scattering process by

ev_ A_

* They also scatter into downstream-going vorticity waves. This is included in the analysis, but

vorticity wave results are not presented here.
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2.2 Plot Format and Special Points

For this study, we have presented our results in the form of plots of power ratios versus

vane/blade (V/B) ratio (e.g. the plots in Chapter 3). The power ratios are for either reflection or

wansmission and are defined as the dB value of the quotient of the output wave power divided by

the input wave power. This quantity is given in terms of scattering coefficient values as specified

by Eq. (A.26) of Appendix A, where power relations are derived. The present format, where V/B

varies, was chosen because it corresponds to the approach used in design work. It is different

from the format sometimes also used (see, for instance, S. N. Smith's investigation in Ref. 6),

where reduced frequency is held constant.

In the design approach, often the solidities of the rotor and stator blade rows are kept

fixed because of aerodynamic requirements. The same is true for flow angles and Mach numbers

which are fixed by pressure ratio and tip speed requirements. Thus, in runs here, these parameters

have been kept fixed and only VIB ratio has been varied, which is equivalent to varying reduced

frequency. To see this equivalence, note that the reduced frequency, COs, for the stator, is given

cob sBf2b

¢'05 UrS Mrsco

by

VM,s ;

- s,

(2.4)

where co is radian frequency; Co is the speed of sound; U,s is fluid velocity relative to the stator;

M,s is the corresponding Mach number, and o s = bV 1 2_r D is the stator solidity. Because Mr,

Ms, and _ s are fixed for the runs, reduced frequency co s varies when VIB varies. The same is

true for the rotor, because its reduced frequency, C0R, is given by

,obR kVab,,
= - ;

\ B )M,. R

(2.5)

where U,R, M,_, and 6 R are the analogs of the stator quantities above.

In studying the curves generated for this report, the main thrust w91 be to investigate the

general trends. However, it will also be useful to consider a number of special vane/blade ratio

points that might also provide understanding in interpreting the results. The first of these points is

actually a range of points. It is that set of VIB values, for a given Mr, where both the input and

output waves for a particular scattering coefficient are cut on (i.e., where both these waves are

propagating waves for the particular modal indices involved). Outside this cut-on range, waves
are said to be cut-off waves. See Ref. 5 for a discussion of cut on and cut off. To obtain non-

zero scattering coefficients, both the input and output waves must be cut on. A formula giving
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the cut-on range in terms of V/B and Mr is derived in Appendix B and is shown graphically in

Fig. 2.2. Such information is useful in that it allows us to see where non-zero values for a given

scattering coefficient should start and end on our plots. Note that the boundary lines in Fig. 2.2

are sketched as straight (which is exactly true in two dimensions), although, as discussed in

Appendix B, this is only an approximation for the three-dimensional situation. Also, note that the

the boundary lines in Fig. 2.2 depend on radial mode index n. This is different from the two-

dimensional case, where there are no radial modes.

A special value of V/B occurs when the normal distance between two stator vanes or rotor

blades is half the length of the free space acoustic wavelength. The condition that occurs at this

value is called "load divergence" and would be expected to produce large values of reflection or

transmission coefficients. The formula specifying where this V/B is located is given in Appendix

B. Note that the value of V/B for this case was dependent on radius r, as will also be the case for

several other of our special points. Because these special conditions may occur at only one r for a

given VIB, it is possible for the associated effects to be weak. Note, however, that for load

divergence this observation may not hold - pressure loading could be sufficiently large, even if at

just one radius, to produce unrealistically high power ratios. Also, note that, for load divergence,

it was observed from computer runs that maximum blade loading generally occurred near the hub

(r = rB). Therefore, we have set r = r_/ in the formula for load divergence. For other special

cases, below, where formulas are also dependent on r, we would expect, however, that the

effects would be strongest for rirD = 0.8, which is roughly where maximum loading ordinarily

occurs. Therefore, we have set rlrD = 0.8 in the formulas for those cases. Note that, for the two-

dimensional approach (Ref. 2), this radial consideration does not arise, because only ro is used.

Power ratio values are also large near the condition called "duct resonance," which

occasionally occurs at VIB ratios very close to cut on. These power ratios are overpredicted

because of limitations in the original V072 model that carry over to SOURCE3D. When these

large values occur, it is normally obvious to the user. As discussed in Ref. 4, this condition is

caused by an inconsistency in the manner in which the unsteady blade loading and the acoustic

modes are calculated. The three-dimensional mode coupling equation has a quantity ka_ in the

denominator that goes to zero at cut off. In a fully consistent three-dimensional method, this limit

would be offset by loading in the numerator that also approaches zero at cut off. However,

because of the mixture of two-dimensional aerodynamic theory and three-dimensional duct

acoustic theory, these cut-off conditions occur at different values of frequency (or RPM or VIB

ratio). Hence, near three-dimensional cut off, the scattering results are not reliable. This

difficulty has been somewhat reduced in the SOURCE3D code by using a "k_-patch," whereby,

when a frequency very near to cut on is reached, ks_ is fixed at the value here and not allowed to
decrease further in a band about cut on.

Another special case is "channel resonance." This condition occurs when standing waves,

with distance between nodes the same as the chord, or channel, length, form between the vane or

blade rows. Formulas predicting the VIB ratios for this phenomenon are derived and presented in

Appendix B. Because the results are dependent on radius r, the formulas are evaluated at rirD =

0.8, as discussed above. Similar to the load divergence case, since pressure loading even at just

-9-
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one r could be very large, we might expect the effect to be stronger than otherwise. However this

does not occur, as will be seen later, when we inspect the curves.

Finally, there are three special values of V/B when wavefronts are either parallel or

perpendicular to the airfoils. First, when they are parallel, we have the "broadside" case (see Figs.

2.3 and 2.4 for the stator and rotor) where significant reflection might be expected. Second,

when input waves are perpendicular to the chord lines, we would expect waves to pass right

through the vane or blade rows, so that reflection would be low and transmission high. This

situation is called the "venetian blind" case and is shown in Fig. 2.5 for the stator. The third is a

similar condition where input waves are not necessarily normal to the chords, but the reflectrA

waves are. This is called the "modal" case, and, for it, we would expect that reflection

coefficients would be smaller. Formulas for the above three cases are derived and displayed in

Appendix B. It should be noted that only the value of VIB for the broadside case is independent

of radius r. Hence, we might expect that this effect would be significant on the curves, but it is

not. For the other cases, the values found for VIB depend on r, so r/ro is set, as before, to 0.8 in

the formulas for identifying modal points on the scattering curves.
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CHAPTER 3

SCATTERING RESULTS

As mentioned previously, we have plotted dB values of (output wave power/input wave

power) ratios versus vane/blade (V/B) ratio. A level of 0 dB is equivalent to unit reflection or

transmission. We have swept out a V/B range of roughly 0.5 to 2.5, while keeping the

solidities,_ s and _ R, of the stator and rotor constant. In studying the curves, we have looked at

both the special points discussed in the previous chapter and at general trends. Work here was

coordinated with a parallel two-dimensional study (Ref. 2), with both supported by the same

NASA contract. Both studies used the same geometry and operating conditions, though the

model was somewhat simpler in the two-dimensional case. For instance, the two-dimensional

model uses only tip radius, while the three-dimensional one employs the entire span between hub

and tip radial stations. Also, the three-dimensional investigation is based on radial and

circumferential mode order, rather than just circumferential modes, as in the two-dimensional

case.

Before beginning the actual test runs, the three-dimensional geometry was tested using a

thin annulus. As expected, the SOURCE3D runs employing this model gave the same power

ratios as given by D. B. Hanson's CUP2D runs.

The test cases for this report are based on the Pratt & Whitney 22 inch Advanced Ducted

Propeller (ADP) model referred to as "Fan 1." It has 45 vanes and 18 blades; however, for

computer runs, the vane number was varied while keeping stator and rotor solidities fixed. Flow

was axial downstream into the rotor and then past the stator. Between rotor and stator, there was

also solid body swirl. To establish operating conditions, rotor rotational speed f_, inlet axial

Mach number M, and pressure ratio were first set, then remaining conditions were calculated

assuming two-dimensional isentropic flow (see Ref. 2). Two of the Pratt & Whitney cases, '_aid

speed" and "high speed," were studied. Operating conditions for the two cases are shown in

Table 1, where p** is far-field pressure and a**is far-field speed of sound.

Scattering curves for the mid speed and high speed cases are presented, separately, in Ref.

7. There were a total of 648 plots. Because our main interest is the rotor/stator interaction, input

waves for the plots all have their starting point between the two blade rows. In the plots, input

waves for the stator and rotor have modal indices (si, /_, nO ranging from (1,1,1) to (3,3,3).

Output waves have indices (s, k, n) satisfying the scattering requirements discussed in Section 2.1

and fall in the same range. Note that output for all additional cut-on k's and n' s was calculated in

totals in the SOURCE3D runs, but was not included as curves on the plots.

Typical sets of stator and rotor plots for one particular choice of input wave, the (1,1,1)

mode, are shown, respectively, in Figs. 3.1 and 3.2. Reflection curves appear at the top and

transmission curves at the bottom. Each plot has curves for the three output radial modes, n = 1,

2, 3. The special points of Chapter 2 are also shown on the curves. These points and the

-14-
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abbreviations, ½WP, CR, DR, VBI, MO, and BSI, used for them, will be discussed later.

Associated with the input index (1,1,1) are two other sets of plots, which appear in Ref. 7, but

which do not appear here. For the stator, there would be plots for the output indices (s = 1,

k = 2, n = 1,2,3) and (s = 1, k = 3, n = 1,2,3). For the rotor, there would be plots for the output

indices (s = 2, k = 1, n = 1,2,3) and (s = 3, k = 1, n = 1,2,3). In Ref. 7, this pattern carries over

for each choice of input indices.. The types of plots shown in Figs. 3.1 and 3.2 are also given for

input radial mode indices of ni = 2 and 3 in Ref. 7.

It was mentioned above that output for additional cut-on k's and n's is calculated in the

SOURCE3D runs, but has not been plotted. This information has, however, been included in

obtaining the total power curves that appear in Figs. 3.1 and 3.2. For the stator, the total power

curves give the sums of the power ratios for all of the cut-on output modes, either for reflection

or transmission, for a given input wave. The setup for the rotor scattering curves is similar.

However, the total power curves for the rotor include only contributions from those cut-on

output modes whose harmonic indices fall between s = -3 and s = 3, because of the manner in

which output was collected for the plots. Note that the same total power curve is carried over

from plot to plot for all three plots associated with a given input wave (see, for instance, Figs.

3.5-3.7, that appear later). The total power curve represents the sum described above, not just

the sum of those curves appearing on a particular figure.

Corrected RPM

Table 1. Operating Conditions

Mid Speed

7031

Pressure Ratio 1.180 1.278

Axial Mach Nos.: Regions 1,2,3"

Swirl Mach Nos. (Tip): Regions 1,2,3"

Tip Rot'l. Mach Nos.: Regions 1,2,3"

Stator Solidity (Tip)

Rotor Solidity (Tip)

Stator Stagger Angle (Tip)

0.404, 0.350, 0.341

High Speed

8750

0.510, 0.404, 0.388

0.000, 0.199, 0.000 0.000, 0.238, 0.000

0.614, 0.600, 0.597 0.772, 0.742, 0.738

Mean Pressure/p** :Regions 1,2,3" 0.894, 1.055, 1.089 0..837, 1.099, 1.152

Total Pressure/Inlet Tot. Pres.: Regions 1.000, 1.180, 1.180 1.000, 1.278, 1.278
1,2,3"

Sound Speex]/a**-Regions 1,2,3" 0.984, 1.008, 1.012 0.975, 1.014, 1.020

1.091 1.091

1.039 1.039

29.6 ° 30.5 °

Rotor Stagger Angle .(Tip) 48.8 ° 51.3 °

* Region 1 = upstream of rotor, Region 2 = between rotor and stator; Region 3 = downstream of stator.
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Let us focus on the curvesin Figs. 3.1 to obtain an initial understanding of scattering

coefficient behavior. Here we see that the (1,1,1) input wave scatters into the (1,1,1), (1,1,2), and

(1,1,3) modes. (It also scatters into (1,2,1), (1,2,2), and (1,3,1) modes which are not shown here,

but are shown on plots in Rcf. 7.) As can be calculated from Eq. (B.1), using data from the

computer run, the input wave cuts off at VIB = 1.68. This is seen in Fig. 3.1, where the total

power curves for reflection and transmission drop off at their right-hand ends. With regard to

individual output modes, observe that the (1,1,2) reflected wave cuts on at 0.70 and cuts off at

1.41, which can be seen in Fig. 3.1. As can be seen from the transmission curve for this mode, the

cut-off limits for transmitted output waves are different. This occurs because the transmitted

waves fall in Region 3, while the reflected ones fall in Region 2. Because the Mach numbers are

different for the two regions, Eq. (B.1) gives different values.

Observe next the special V/B points displayed on Fig. 3.1. These were defined earlier in

Section 2.2 and have been calculated using the formulas presented in Appendix B. On the curves,

_WP represents a half wave point; CR, a channel resonance point; DR, a duct resonance point;

VBI, a venetian blind input wave point; MO, a modal scattered wave point; and BSI, a broadside

input wave point. The VIB values where these conditions occur are shown in parentheses.

With regard to these points, first observe that the half wave points in Fig. 3.1, at V/B

= 0.56, explain why the ordinate values there are so large. Half wave, or load divergence, points

are points at which blade loading becomes large. Next note that channel resonance points at VIB

= 1.06 (q = 2) and 0.71 (q =3) in the reflection plot of Fig. 3.1, which are points where organ pipe

type behavior could occur, did not show any particular pattern. The parameter q is the non-zero

integer appearing in Eq. (B.6). One value was near a local maximum, the other near a.local

rnimrmlm_, and other points, not shown here, were at neither. Channel resonance points showed

no particular pattern, also, in the two-dimensional case. A duct resonance point occurs near cut

off for the (1,1,1) input wave. This can be seen on the reflection plot of Fig. 3.1 at VIB = 1.68.

This condition explains the high ordinate at this point. When duct resonance occurs here or

elsewhere, it is usually obvious to the analyst that this condition has occurred, and the value

should be disregarded. Rec.a_ that 0 dB indicates reflected power equal to input power. It has

been found for two-dimensional stators (Ref. 2) that reflection coefficients do not exceed 0 dB. If

this behavior carries over to three dimensions, then values above 0 dB should be ignored.

VBI type points, for the stator, occur when input wave fronts are normal to chord lines.

These points are shown at VIB = 0.86 in Fig. 3.1, and, similar to the two-dimensional case, show

a definite effect. Input waves transmit through the vane row with virtually no scattering, and

there is very little reflection. Looking at occurrences here and on curves not shown, we see that

transmission is high or at a peak and reflection is at or near dips in the plots. MO points are also

shown on Fig. 3.1. For these points, which occur at VIB = 1.32, the wave fronts are also

perpendicular to the vane chords; however, now, the waves traveling in this direction are output

waves only. In this situation, the reflected waves are normal to the vane loading dipoles, so

cannot couple to them. Thus, where they appear in our reflection curves, here and on others not

shown, they generally, but not always, appear at dips. However, this condition does not appear

as strong as for the two-dimeusional case.
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BSI type points,for the stator, occur when input waves are parallel to the vane chords.

Because of this orientation, we might expect peaks in the reflection curves and low values in the

transmission curves for this case. However, these peaks and low values did not occur for the

reflection and transmission BSI points we see at VIB = 1.45 in Fig. 3.1, as well as on other curves

not shown. In fact, in some of these cases, BSI reflection points were near local minimums. We

might also have expected, here, even more than for the other special points, to have seen a special

effect, because, unlike in the case for the other special points (see Appendix B), the formula for

V/B, Eq. (B.12) does not depend on r. However, no special effect occurred. The same was true

for the two-dimensional situation. There can also be BSR points, corresponding to reflected

broadside output waves. However, none of the values of points for this condition fell on the

curves that were generated. They generally were calculated to be near cut on or cut off, but were

located in regions where the curves were cut off. Near these locations, the formulas for BSR and

cut-off points were similar, but not identically the same.

For the rotor, special points are shown in Fig. 3.2. Generany, the behavior is consistent

with that for the stator case. In particular, for the VBI case, _ansmission power is high and

reflection low, as was the case for the stator. There is a difference, however, for the MO point in

the reflection curve of Fig. 3.2. It is not near a dip as it was for the stator case. Also different

from the stator case, there is a BSR point that falls on one of the curves (at VIB = 0.74).

Note that, when we compare three-dimensional plots with two-dimensional ones, we

observe that some of the effects are not as pronounced. For example, in the three-dimensional

case, peaks and dips are generally not as sharp. This muted effect, most likely, is a result of the

fact that, for three dimensions, the behavior for special points is actually spread over a range of

V/B's, rather than being located at just one point. This spread of special points, in turn, occurs

because of the radial dependence in many of the formulas in Appendix B.

The scattering curves here and in Ref. 7 were studied at great length to discover whether

there were any general trends. Observations resulting from this effort are presented in what

follows. Plots for both the mid speed and high speed cases are treated together because they were

similar. Regarding reflection for the stator, we saw no real patterns. However, for the most part,

we did observe low reflection and high transmission over much of the VIB range. For

transmission, waves scattered primarily one mode into itself, but this was not always the case.

Examples of where this behavior occurred are the transmission of mode (1,1,1) into (1,1,1) in

Figs. 3.1 and Fig. 3.3. When this behavior fails on a portion of the VIB range, mainly because the

input wave is cut on but the output one is not, then scattered waves with a lower k and the same

or higher n frequently predominate. See, for example, Fig. 3.4 for input wave (2,2,1), with

output waves (2,1,1), (2,1,2), and (2,1,3) predominating at higher VIB. Note that below VIB =

1.7 on Fig. 3.4, modes not shown are dominating.

Regarding the rotor, it was found, for the two-dimensional situation in Ref. 2, that, for

input waves at BPF, reflected energy was primarily into upper harmonics over a wide range of the

V/B span. Also, there was sizable transmission loss over the majority of the V/B range on curves

not shown. The energy that makes it through is scattered into higher harmonics. Regarding

three-dimensional reflection, as for the two-dimensional case, most of the reflected energy, with
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input waves at BPF, appears in upper harmonics, over most of the V/B range. See, for example,

Figs. 3.5 - 3.7 for the (1,1,1) input wave. The effect is not as pronounced, flit exists at all, above

BPF. Three-dimensional transmission is different from two-dimensional transmission. We did not

see substantial transmission loss over most of the VIB range, as was the case for two dimensions.

In fact, we observed very little. Additionally, we observed individualmodes transmitting primarily

into themselves, e.g. (1,1,2) into (1,1,2) in Fig. 3.8, or modes transmitting not only into

themselves but into themselves and also into modes with the same (s, k) but with closeby n's, e.g.

mode (2,2,2) into (2,2,1), (2,2,2), and (2,2,3) in Fig. 3.9.

Just as in the two-dimensional case, we investigated scattering curves to see whether there

was increased reflection at the higher speed. As for the two-dimensional situation, this was not

the case. The reason it is not the case, most likely, is because we are looking at individual waves,

rather than rays.

Note that, for the rotor, we sometimes had reflection and transmission power ratios

greater than one, i.e., dB values greater than zero. Discussion in Ref. 2 shows why this is possible

for the two-dimensional case. These ideas carry over analogously to the three-dimensional

situation, though this case is a bit more complicated. Physically, what is happening is that the

energy in scattered waves is increased by the rotation of the blades.
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CHAPTER 4

CONCLUDING REMARKS

This report has employed the three-dimensional SOURCE3D Rotor Wake/Stator

Interaction Code to study the scattering coefficients for rotor and stator blade rows. A very large

number of reflection and transmission plots have been derived and investigated for trends. These

plots are for ratios of output to input wave power versus vane/blade ratio. Power ratios are dB

values. Results have been compared to previous two-dimensional results of D. B. Hanson.

To further understand the plots, formulas were derived for predicting special points where

there were types of wave alignment or where other conditions existed. It was found that for

points where the normal distance between vanes or blades was half the acoustic wavelength, high

power levels were produced. This result was in contrast to the two-dimensional situation. This

condition is called "load divergence." A second condition, that of "channel resonance," where

standing waves could possibly form in the channels between blades or vanes, similar to the two-

dimensional case, produced no distinctive results. Another condition, "duct resonance," which

sometimes occurs near cut on, was seen to produce unrealistically high power predictions. These

values are caused by limitations in the earlier V072 Rotor Wake/Stator Interaction Code, portions

of which are used in SOURCE3D. Such values are easily recognized when they occur.

It was discovered that for wave fronts normal to vane or blade chords, the "venetian

blind" case, input waves transmit through with virtually no scattering, and transmission power is

high. For the stator, when only the output waves are perpendicular to the chords, we have the

'knodal" case. These waves cannot couple to the loading dipoles, and they generally produce

dips in the curves. This pattern, however, was not seen for the rotor case. When input waves are

oriented parallel to chords, in the "broadside" case, we might anticipate that there would be high

reflection and low transmission. However, this did not happen. These "venetian blind" and

"broadside" results were similar to the ones for two dimensions.

Regarding general trends, it was seen for the stator that there was generally high

transmission and low reflection over most of the vane/blade ratio range. For transmission, modes

generally scattered into themselves, but this was not always the case. For the rotor, we found

very tittle transmission loss, and, in a large number of cases, we found modes transmitting into

themselves, or into modes with the same blade and vane harmonic indices and with the same or

closeby radial indices. These three-dimeusional rotor results were different from their two-

dimensional counterparts. We also saw that, for the rotor, scattered energy could be greater than

input wave energy by virtue of energy supplied by blade motion.

It is hoped that work in this report will serve to shed Light on the complex phenomena of

rotor and stator scattering. It is also hoped that this report will assist others in understanding

more fully the behavior of the rotor and stator source elements in the TFaNS (the Theoretical Fan

Noise Design/Prediction System), of which SOURCE3D is a part
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APPENDIX A

SOUND POWER RELATIONS

In this appendix, we w_l derive the expression for acoustic power for a standard pressure

wave

p(xl,r,_,t)= p** _ _ _ Askn_lmn(r)e i(m¢_a_xl-sBf2t), (A.1)

s=--** k=--** n=l

at an arbitrary axial interface, xp = 0, in an annular duct. Notation is the same as that defined

previously in Chapters 1 and 2; and Eq. (A.1) comes from Eq. (2.1), only now the indices P and

W are omitted for convenience - they are not n_ for the derivation. Once we have the

expression for acoustic power, we will use it to obtain the ratio of output to input wave power.

The approach here is similar to that in Appendix C of Ref. 5, so the reader is referred there for

additional detail when needed. The major difference between the work in Ref. 5 and the work

here is that swirl is included in the present derivation (approximately, via a coordinate

transformation), whereas it was not included before.

As in to Ref. 7, the acoustic energy flux vector, I, is given by

I= --+u.U (pou+pU),
_Po

(A.2)

where p,

mean flow density and velocity.
be

p, and u are the perturbation pressure, density, and velocity, and p 0 and U are the

From this equation, the axial component 1.-. of I is easily seen to

(A.3)

where u, v and U, V are the axial and transverse velocity components of u and U, respectively,

which makes V, also, the swirl component. This equation then can be transformed to

2 M0+M +--.p* +p
PoCo

- poCo _sr uv* -M _sr pv*,
Co CO

(A.4)

applying p = p / c_ , M = U l co , pu = pu * , uu = uu * , uv = uv * , pv = pv * , and V = -f_sr .

Also, _sis swirl flow rotational speed, and u* and v* are the complex conjugates of u and v. The
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valuesof the quantifies in Eq. (A.4) are specific to the duct region where a particular wave is

located. Thus these values could be different for the input and the output waves involved in a

power ratio.

It is shown in Ref. 4 that the axial and transverse velocities associated with p can be

written as

u(x 1,r,¢, t) = a_ _ u_&_g ,,,,_(r)e i(m*-n''_l -sBa0, (A. 5)
s=--** k=--** n=l

where

V(Xl,r,_,t)=a,, f_ _ _-_ vs_As_wmn(r)e i(mc'7_xa-sl_qt) ,

s=--_ k=--o, n=l

(A.6)

P**Y s_ (A.7)
Usk n =

a**po3,skn

and

p**m (A.8)Vsk n =
a**p or;Z slm

3.s_ = -sBf2 - UTs_ + m-f2s. (A.9)

The parameter a**is the far-field speed of sound and _, stnis the axial wavemtmber, given by

where

zo )- "}' (A.IO)

and

it, Co
(A.11)

fJ = .f_- M 2 . (A.12)

The sound power flux through a cross-section of the duct, which will give the power we

seek, is given (see Ref. 7) by

Power= [ <lax >dA, (A.13)
J/t o

where <Iax > is the acoustic intensity,
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B_'2 _._ I B_<I= >= laxdt
2rr -_ l Bn

(A.14)

and AD is the duct cross-sectional area. Then, using Eqs. (A.1), (A.4)-(A.6), and (A.14), while

proceeding the same as in Ref. 5, Eq. (A.13) can be evaluated to give that

where

-rit)P** _ _ _ [Gslm +(_s_]lAstn 12 , (A.15)Power = _(r_ 2 2

P0 U k=--**n=l s=---**

2 *

Gs/m = M2 - (1 + M )Cstn+lCslml 2 , (A.16)

and

Gsin = - _zs Cs_D_tn + _M_s D'sin,
Mc 0 Co

(A.17)

(A.18)

m
(A.19)

We can simplify (_s_ and Gs_ to give

E ; :- '_J

(_$Jm _?r/M2 ("_')_ 4k$/m= (A.21)

[(:,o:,.)+_
where the upper set of signs in each equation corresponds to upstream-going waves and the lower

ones to downstream-going waves. From these relations, we can deduce that
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co

(A.22)

Thus Eq. (A.15) can be written, finally, as

rf-1)P** 2 2 ___ Gs_lAs_l 2.power= rc(r - 2 2
P0 U k=--** n=l s=--_

(A.23)

Because we are dealing with scattering coefficients, we are interested in power ratios, _,

rather than just straight power. Using individual terms from Eq. (A.23) for the power of input

mode (si, k/, nf) and of output mode (s, k, n), we have*

= P°wer°_t = P°'°utU°ut GsI_ (A.24)
Powerin p0,/nU/n Gsi_n_ ISskn;sdqn_12'

where the subscripts "in" and "out" refer to input and output waves. Also, we have used that the

scattering coefficient, Ss_;si_n_, is given by Ask n /Asi_.

Finally, using Eq. (A.22) for Gs_ and Gsi_, _ ; applying the relation Co2 =200 / Po, where

y is the specific heat ratio for air and po is the mean flow pressure; letting Mr be the rotor blade

tip rotational Mach number and M, the swirl rotational Mach number at the rotor tip; then

Eq. (A.24) can be written as

(A.25)

* Note that when coding the power ratio for use with SOURCE3D, Eq. (A.24), must be

multiplied by a term I_max, in/_max, outl, where _max,in and _max, ou_ are the maximum values,

radially, of the input and output radial mode functions involved. This is to compensate for the

fact that the radial mode functions actually used in the code are not normalized to +1. In the

definition of the scattering coefficients Sskn;si_n i , they are assumed normalized to +1.
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where ks_ = ks_ro. For the plots, we use decibel values. Thus what is actually used is

_aB = lOl°glo _. (A.26)
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APPENDIX B

SPECIAL VANE/BLADE RATIOS

This section develops the relationships presented in Section 2.2 that are used to locate

special behavior on the scattering curves. The locations are given in terms of vane/blade (V/B), or

blade/vane (B/V), ratio. At times, detail here will be brief; when this is the case, the reader might

wish to refer to Ref. 2, where the two-dimensional case is treated and details are similar.

Cut-On Range. Corresponding to the discussion in the main body of the report, the first set of

points is actually a range of points. Cut on is discussed thoroughly in Refs. 2 and 5, and

elsewhere. For the three-dimensional case, it occurs when the square root in the expression for
P

7 ws_, Eq. (2.2), i.e. the k_s_part, given by Eq. (2.3), is real. Then 3,vws_ is real, and the wave

propagates with no attenuation in the axial direction. When the square root becomes zero, we are

at the cut-off point. As the expression inside the square root becomes negative, the square root
P

becomes imaginary and the e/_wa_ factor in the expression for a wave, Eq. (2.1), decays.

Proceeding much as for the two-dimensional case (Ref. 2), we can set the square root in

Eq. (2.3) equal to zero and solve for Mr at cut off. We obtain

\ m ]j< sB )cutoff"
(B.I)

Similar to the two-dimensional case, Eq. (B.1) allows us to draw a sketch showing the cut-on

range for V/B for each value of Mr for a fixed radial index n. The sketch is shown in Fig. 2.2.

The dependence on n comes from _:_ in Eq. (B.1). The values of m change as V/B changes.

Note that for the two-dimensional case, (_:mn / m) _ 1, so the boundaries in Fig. 2.2 for such a

case would be straight lines. For three dimensions, _:mn / m will vary as VIB changes, so the two

lines bounding the cut-on range will not necessarily be straight. However, the variation is so

small, that generally, for all intents and purposes, the lines are straight, and that is the way they

have been drawn in Fig. 2.2. At any rate, please note that there is a range of VIB values for which

waves are cut on. Also note that, in Fig. 2.2, there are regions indicated where m is either

positive or negative; how these regions are determined is discussed in Ref. 2.

Half Wavelength (Load Divergence) Points. Half wavelength points occur when the normal

distance between vanes or blades is the same as half the sound wavelength in free space. For the

stator (refer to Fig. B.1), the distance between vanes, at each radius, is (2nr/V)coso_ s, and the

free space wavelength X is (2rcc/sBf_), since the frequency is (sB_/2re), where c is the free

space speed of sound. Hence,
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and

2_r 7_c

_COSO_ S = _,
V sB_

sB

= COS(X S'
r____H<___r <_1"

ro

(B.2)

(B.3)

Note that V/B depends on the radial location r. In analyzing run output data, we have

observed that blade loading is very high when there is load divergence and this high value is only

needed at one or more radial stations m rtt < r < rD to cause load divergence. Generally,

when there is load divergence, the high loading occurs near r = r//. Applying this information,

Eq. 03.3) then gives the vane/blade ratio for load divergence,

v= 2Mr cosas, n, (B.4)

where O_s,l.1 is the stator stagger angle at the hub. Similarly, for the rotor, we have load diver-

gence at

B = 2M r c°s°_R,n, (B.5)
kV

where ctR,//is the negative of the rotor stagger angle at the hub. Eq. (B.4) was used to identify

the load divergence points (labeled ½WP) in Fig.3.1.

Channel Resonance Points. Channel resonance occurs when the distance between nodes of a

standing wave located between two adjacent vanes or blades is the same as the length of the

channel (i.e., the chord). The same formula that was derived for the stator in Ref. 2 for the two-

dimensional case also holds for the three-dimensional case. Thus we have

V D.r/c

2 q 2xr "
(1 - MrS)('_IV'(_ ]

03.6)

However, now r is not one fixed value, but varies over vane span. The same is true for b, the

vane semi-chord. In Eq. (B.6), MTs is the relative Mach number for the stator vane rows and q is

any non-zero integer.

This equation can be rewritten as
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= _1=
2 q,,

(B.7)

V(2b) is the solidity of the stator, and br is the semi-chord at the vane tip. To find
where _s = 27tr o

the particular value of V/B where the channel resonance effect might be the greatest, we set

r / rD = 0.8, roughly where maximum loading occurs for cases other than load divergence. Thus

in Eq. (B.7) it is to be assumed that Os and b/br are evaluated at r/rD = 0.8. Similarly, for the

rotor, we have

B

kV
03.8)

B(2bR)
where _ R = -- isthe solidity of the rotor, bR is the blade semi-chord, bin- is the semi-chord

2_r D

at the blade tip, and Mm is the rehtive Math number for the rotor blade rows. As for the stator,

quantities on the right-hand side of Eq. (B.8) are evaluated at rlrD = 0.8. Note that, in computer

runs, _s and o R were kept constant. Also, for the particular geometry studied, blbT was

constant; however, bRIb_ was not Eqs. (B.7) and (B.8) were used to identify the channel

resonance points (labeled CR) in Figs. 3.1 and 3.2.

Broadside, Venetian Blind, and Modal Points. Broadside, venetian blind, and modal points are

defined in Section 2.2. They are points where wavefronts are either parallel or perpendicular to

stator vanes or rotor blades. To find the VIB values where these conditions occur, we first derive

formulas in terms of arbitrary wavefront slopes, then substitute in values for the particular cases.

Consider the exponential term e i(ra_xl-sBfa) in Eq. (2.1) for a standard wave, where xPhas

been taken to be zero and where, for convenience, P and W are omitted. Because a wavefront is a

line having constant phase at any given time, this term tells us that these lines are the the ones

where me -7 sknXl = constant. Using the coordinates in Fig. B. 1 and converting from polar to

Cartesian coordinates, we have that _ = -y / r. Hence, wavefronts are defined by the relation

at any fixed value of radius r.

m
--Y = -'7 st_Xl + constant, (B.9)
r

The slope of this line is "-7 sk, r / m. Therefore, recalling Eq. (2.2), the slope _ of the

wavefront can be written as
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(B.10)

In Eq. (B.10) and throughout the rest of this section, the upper and lower signs refer,
respectively,to upstream-anddownstream-goingwaves.For the statorcase, Eq. (B.10) can be

solved for (kV/sB) to give

kv Mr
--=1 . . . (B.11)

For the broadside case, it can be seen from the Mach-number triangle in Fig. 2.3 that

= \ M J_r o J Substituting this relation in Eq. (BAD, then

kV ...... M r

lf .? +fM, .
03.12)

Upper and lower signs in Eq. 03.12) have been set based on physical arguments discussed in

Ref. 2. This will also be the case for analogous formulas later in this section. Note that (kV/sB) in

Eq. (13.12) does not depend on r. This means that waves are "broadside" at all radii for the VIB

ratio of Eq. (B.12). Thus, we might expect large reflection at this vane/blade ratio. However, in

practice this does not turn out to be the case. Also note that Eq. (B.12) does not give VIB

explicitly, because K,_ / m on the right depends on VlB. Therefore, to find VIB from Eq. (B.12),

we must iteratively determine values of Km / m for different values of VIB, from computer run

data, until the equation is satisfied.

From the Mach-number triangle m Fig. 2.5, we see that the wavefront slope for the

venetian blind case is _ ._Ms )\ )"r
J

cases,

kV
_=1

sB Ms I,M, A r )

The same is true for the modal case. Hence for these

Mr
(B.13)

To eliminate radial dependence, we set r / rD = 0.8. Because peak loads occur near this location,

we would expect that this value would give a vane/blade ratio providing maximum effect. We

have
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k_y_V= 1 MT . 03.14)
M 2 -- _mn 2

For the rotor, we invert both sides of Eq. 03.1 1) and rewrite it in the form

s_B_B= 1 MT . 03.15)

Then for the broadside case, we see from the Math-number triangle in Fig. 2.4 that the slope _ is
/ "x

,_= Ms-MT(r--[-]. ThusEq. 03.15) gives the formulagiven by
M Lro)

SB : l _ Mr 03.16)

As for the stator broadside case, Eq. 03.12), this relation also does not depend on r. For the

venetian blind and modal rotor cases, A is the negative of the reciprocal of that for the broadside

case, i.e., _= M_-Ms . Using tl_ in Eq. (B.15) and taking rD/r- 0.8, we thenhave

s_fiB= 1 MT . 03.17)

_ _

Eqs. 03.12) and (B.16) were used to identify the broadside points (labeled BSI and BSR) in Figs.

3.1 and 3.2. Exls. 03.14) and 03.17) were used to identify the venetian blind and modal points

(labeled VBI and MO) in Figs. 3.1 and 3.2.
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